

Restaurant Wait Time

Estimation

Final Report

ESE 499: Capstone Design Project

Erandy Vennet Segovia

Systems Science and Engineering Major
erandy.segovia@wustl.edu

(760)331-8779

Anuj Rudresh Patel
Systems Science and Engineering Major

anuj.patel@wustl.edu
(574) 485-6941

Zachary William Lonneman

Systems Science and Engineering Major
zlonneman@wustl.edu

(513)600-7086

Project Advisor
Dr. Benjamin Hartlage

Adjunct Professor at Washington University in St. Louis
rhartlage@gmail.com

(210)542-7621

2

Abstract

This study details the methodology developed to accurately estimate

restaurant wait times. We considered several industry-standard restaurant

management metrics in creating a simulation model which allowed us to generate

estimated wait times. To confirm the accuracy of our results, we collected real-time

scenario data and compared these data that we collected to the estimate provided

by our model. The results of this comparison indicate that our estimation method is

accurate under normal simulation parameters. Additionally, simulation input

distributions and the calculation of individual components served as feedback

mechanisms used to update the initial estimate.

3

Introduction and background

In restaurant management, customer satisfaction is a main driver of business

success. Cornell University Professor, Sheryl E. Kimes Ph.D., states: “Those that

continue with seating from a first-come, first-served waitlist should consider ways

to empower guests, for example, by giving accurate wait times or issuing pagers.”

Giving customers an estimated wait time can be risky--liberal estimates can lure

some away and conservative estimates can cause issues in customer service, and

negatively affect the customer’s probability of return. To address this issue, we

implement a simulation model that estimates a customer’s wait time more precisely.

The development of our methodology led us to first consider the analysis of

dine-in establishments. First, we looked at point-of-service (POS), which is an

effective tool for managing issues related to data-driven decisions. POS plays a very

important role in the implementation of our simulation. This tool allows us to

incorporate and keep track of various occurrences in the system and gives us a

first-hand look at the different trends and patterns occurring in the restaurant.

Keeping track of this information allows us to generate data regarding other

components in our system, which allows us to delay generating estimates until we

had established a high degree of certainty in the accuracy of the estimate.

To check the results of our simulation, we looked up information regarding

M/M/s queues. An M/M/s queue is a single queue served by multiple servers. For

each server, service rate is represented with µ and arrival rate can be found using,

λ/m where λ is the arrival rate and is measured in customers per hour. Such

4

systems generally begin with customers at the head of a queue and moves each

customer to service when a server becomes available. From Traffic Behavior and

Queuing in a QoS Environment, we learned that occupancy in a dine-in system can

be measured using N = ρ/(1 - ρ) and delay as T = 1/(m - λ), where ρ = λ/m

(Bertsekas). These equations proved useful in allowing us to compare results from

our simulation, and in the overall implementation of our estimation method.

Problem statement and objectives

Most restaurants approximate wait times using information such as

occupancy and the number of available servers. When asking Tom Schmidt, owner

of local St. Louis restaurant, Salt & Smoke, how wait times were estimated in his

establishment, he assured us that they weren’t very accurate and that hosts try to

guess based on intuition. Here, our objective is to generate a method that provides a

more accurate wait time estimation by accounting for forgotten or ignored

variables. These variables include information specific to every table in the

restaurant such as the amount and type of food ordered, and the reason for visiting

(group celebration, family event, date or quick meal). Because these tasks cannot be

quickly done by humans, we implement an estimation method that automates these

calculations, presenting restaurants with the option to maximize wait time estimate

accuracy.

Our first objective, creating a simulation of our restaurant, required an

environment which considers random variables. First, we test an environment with

a given number of tables, and servers, and semi-random influx of customers. The

5

environment consisted of a varied menu with different ranges in preparation times,

and a semi-random order rate. Next, we approximated variables such as the amount

of time that customers stay after they have finished their meals. From this, we

observed patterns which allowed us to pick out instances that needed to be treated

with specific, more unique approaches.

Methodology Development

Data Collection

After creating our simulated system we gathered information from Salt &

Smoke in order to accurately replicate a realistic environment. For this project, we

chose to focus on collecting data from sit-down restaurants because issues with

imprecise wait-time estimations are experienced most in this setting. While at the

restaurant, we focused on measuring observations such as arrival and departure

times, the overall time that it takes to get a customer through the queue, time

duration of individual tasks (sitting, ordering, paying, etc.), party sizes, and

estimated versus actual wait times. Additionally, we observed the number of tables

available, the number of servers available during wait time periods, the number of

tables allotted to each server, the preparation times for each meal, and the

difference in average dining time of groups based on occasion.

After accruing this data, we returned to our simulation, made comparisons,

and then made necessary adjustments to our system. Taking the different variables

that we gathered into consideration, we were able to compose a method to find the

most accurate wait times. To better understand the current system of wait time

6

estimation, Schmidt explained the arrangement of tables, maximum seating, food

preparation times and server allocation. When collecting data, we took into account

the overall layout of the restaurant, the number of servers, and collected several

other factors regarding the overall functionality of the business. The collection of

this information allowed us to gain a better understanding of some of the variables

used when implementing our model and even led us to notice the significance of

several variables that we had not previously accounted for. From the data we

collected, we calculated several parameters, which allowed us to have something to

compare the results of our simulation.

Simulation

While working on our simulation model, we wanted to ensure we had varied

data and accurately depicted a real life system. In order to achieve an accurate

simulation, we wanted to use the data we collected from a real restaurant so that we

would have an idea of how the restaurant flowed, or functioned. To begin the

simulation process, we began using a program called Arena, a simulation software

that Dr. Hartlage recommended. Our original idea for the simulation made us

believe that this software would be very useful because Arena is able to create

random “parties” which followed uniform normal distribution. This software

automatically collects data such as queue times and also keeps track of party entries

and exits. As we began to create a larger system with more variables, the trial

version that we were using reached its memory capacity and we were unable to

continue implementing this model. After considering several alternatives, we

7

created a new simulation model in Matlab which allowed us to simulate a night at

the restaurant.

To implement our simulated model, we created two methods, one which

initialized the “night” and another that would run through a step-by-step process of

how the night would play out. Some of the steps followed in this process consisted

of creating an arrival time for a party of a random size (ranging from 1 to 12, with a

mean of 2), an anticipated order for the party, and the total time that the party spent

in the queue. The initialization method was created to simulate a night at Salt &

Smoke but adjustments in its inputs could be made to fit those of different

restaurants.

The simulated data we created using these two methods were saved into an

array which would be fed into the system, with each column arriving at their

designated times. Another unique portion that we accurately recreated the decision

process used by the host staff to seating incoming restaurant patrons who came in

larger parties or required restructuring of tables to accommodate their parties. To

do this, we decided that a two person party would be seated at a four person table if

there were no more available two person tables. Here, we recognized that the host

had an advantage over the simulation, but we figured that our algorithm was able to

call on previous data. In the end, we had to make assumptions on how likely a 12

person party could be seated at the time they arrived. If there was one 6 person

table, 2 available 4 person tables, and 2 available 2 person tables available, we

would not seat them because it is more likely that the tables that are available would

8

not be around each other. Empirical experimentation eventually produced a

decision process with outcomes that mimicked the human decision process we

observed with sufficient accuracy to continue. As the tables filled up, we were no

longer able to seat incoming parties, so we needed to create a new array to hold the

data of the waiting parties. The last obstacle was deciding when to seat new arrivals

versus when to seat those on the wait list and sorting between the waitlist.

According to the hosts at Salt & Smoke, they try to adhere to a first come first seat

rule, meaning that when possible they try to stick to the waitlist in the order that

people arrived. This doesn’t apply, however when a party of two arrives after a

party of 10 who is waiting on tables. In real life the host can look around the

restaurant and see which tables are almost finished, and set aside those tables for

the larger party. In our simulation there was no way of telling which tables were

surrounded by which tables. Meaning once again we would need to make some

assumptions on how to seat these larger parties, without tables constantly being

filled by smaller parties.

Our best solution ended up fitting the mold of a restaurant fairly well--it was

to put a hold on tables, so if a restaurant was completely booked and a 10 person

party arrived, we would put a hold on the first available 6 person table, and the

fourth available 4 person table. The simplifying assumptions we made allowed us to

capture the essential features of the restaurant queuing process without requiring

unnecessary model fidelity.

9

Estimation Model Implementation

In order to accurately calculate an incoming party’s wait time, we need data

regarding the seated parties and those ahead of the incoming party in the waitlist at

a restaurant. That information then must be used to estimate when a table

accommodating the incoming party’s size is available. To do this in a memory and

time efficient manner, we chose to create five data structures that store and track

information regarding the menu, the servers, the incoming parties, the tables, and

the wait list throughout the simulation.

● Menu: this constant data structure contains data about the menu items

served at the restaurant. For each menu item, three pieces of information are

stored – a unique, non-zero numerical code that identifies each menu item,

the average amount of time it takes for the item to be prepared by the cooks,

and the standard deviation of this previous statistic.

● Servers: this data structure stores three pieces of data regarding the servers

in the restaurant. First, there is a unique, non-zero numerical identifier called

the server code. Then, the total number of parties the server has attended

and the average time the parties stay at the restaurant are stored.

● Parties: this data structure stores data about the parties that come into the

restaurant. The information stored includes the party code (unique, non-zero

numerical identifier), the party size, their food order (slowest cooking time

item is chosen), when the party entered the restaurant, and, if the party has

left the restaurant, how long they stayed at the restaurant.

10

● Tables: this data structure stores data about the tables in the restaurant and

their occupancy. The structure, using a unique, non-zero numerical code to

identify each table, tracks their sizes and whether they are occupied. If the

table is occupied, the party’s code, the time the party was seated, and the

server code.

● Waitlist: this data structure contains a list of any parties in the waitlist in

order of arrival. The party code and the party’s calculated wait time is stored

in this structure.

In order to ensure that these structures contain accurate and up-to-date

instructions, we created functions that register important events in the restaurant’s

operations and the customer’s experience. These events are:

● The restaurant is inaugurated (initialization)

● A party enters into the restaurant

● Restaurant host checks for available seats for incoming party

● If seats are not available, party is added to the waitlist and a wait time is

reported

● If seats are available, party is seated and their order taken

● The party’s food order is served

● The party leaves the restaurant

While these functions input and output data commonly seen and used in POS

machines in most restaurants, the one output unique to our system is the

computation of a wait time. To explain how this value is estimated, we envision a

11

scenario in which a family of 4 comes into a restaurant. Assuming that the

restaurant is packed but no wait list exists, our method will find the table of 4 that is

closest to finishing their meal and leaving the restaurant. This is done through the

use of the dishes’ cook times and the statistical data on how long customers stay at

the restaurant after the arrival of their food. For our estimation method, we initially

do so using data we collected from Salt & Smoke. However, part way through the

simulation, we can choose to shift to calculating the wait time using past data stored

by our system. The family of 4’s wait time will hence be equal to the time in which

the next table of 4 becomes available.

In a more advanced scenario, say the family of 4 enters a packed restaurant

already with a wait list. Our method matches parties in the waitlist with occupied

tables, where the parties at the front of the waitlist are matched to tables more

likely to be unoccupied first. This matching isn’t a locked arrangement, it is just used

as a means to generate estimates; parties are still seated in order of their arrival.

Therefore, for the sake of the computation only, the waitlist is divided up into

separate queues, one for each table in the restaurant. However, because we do not

have information on the food order of parties in the wait list, wait time estimates for

parties past the first “layer” of the queue will have to rely on the average time a

party spends at the restaurant. In order to ensure accurate wait time estimates,

these values are constantly updated as customers leave the restaurant.

In order to merge our simulation and estimation model, we developed a

simulation model that used the events randomly generated by our simulation and

12

ran the functions representing the appropriate simulation event in chronological

order. At the end of one simulated evening, data regarding the accuracy of our wait

time estimates is reported and the cooking time and eating time data is fed back into

the next simulation to improve the accuracy of the next run’s estimates. This process

is shown in the flowchart in Appendix E.

Results

Based on the real-time sample data that we collected from Salt & Smoke, we

found that once the restaurant filled up, a group of 3 was given an estimated wait

time of 10-15 minutes. The actual wait time in this scenario turned out to be 4

minutes. Comparing this information to the results gathered from our simulation

and the implemented method, we established the success of our experiment.

With our simulated data, our goal was to analyze the difference between the

real wait times and estimated wait times of any party that was placed in the waitlist

for any period of time. For a given simulated evening, approximately 80-90 parties

would enter the restaurant. Out of these parties, about 10-12 parties are waitlisted

at some point in their experience. Calculating and plotting the difference between

these parties’ real and estimated wait times shows us that, under normal dining

parameters, our estimates are accurate. Appendix F shows a plot of these calculated

differences from one particular simulation. In this plot, we see that the differences

don’t exceed approximately ±2 mins.

Discussion

13

Looking back into the design of our simulation and estimation method, one

issue we faced was balancing the use of random numbers to create variability while

ensuring accurate wait time estimates. In our initial analysis of restaurants and how

they are structured, we knew that the time of completion for every process in a

restaurant wasn’t constant, and fell into some distribution. While we were able to

ascertain that party arrivals were distributed exponentially, we didn’t have the

means to collect sufficient data to see what distributions food cooking time and

party eating time fell under.

When it came time to create our simulation, this was a problem since we

didn’t know what random number generator to use. As a result, we settled on using

an exponential random number generator for all variability. This decision may have

added significant inaccuracy to our results. If given the chance to implement this

system, further in-depth research will allow us to pinpoint the probability

distributions. Additionally, our simulation only covered normal dining parameters

and wasn’t put through a more rigorous test of high flow scenarios. Although we

decided against testing this because very few restaurants experience such situations

and because of time constraints, there is a possibility that our estimation method

will not be accurate in those scenarios.

When designing the estimation method, ensuring that restaurants and

restaurant employees wouldn’t need to make any extra effort to contribute to the

success of the system was paramount. We wanted to make sure our product would

integrate with existing data collection systems at restaurants. Because most modern

14

establishments use POS systems to manage and collect data, we designed our

method to complement this. Hence, it made sense to create a real-time estimator

using the seating and order information servers already input in the POS.

From a marketing point of view, this makes our product very strong and

valuable. Being a moderately simple method that extends an existing system,

restaurants won’t need to invest large sums to obtain our product. Additionally,

since servers and hosts won’t have to do anything they didn’t do before to ensure

the success of this system, there will be no retraining or operational costs.

Restaurants will also be able to reap benefits of increased customer satisfaction and

additional restaurant operation data. Though these benefits aren’t accurately

quantifiable, they will definitely contribute to the success of an establishment.

Conclusions

As we look back on our results, and on the simulation model itself, given the

right equipment, and willing restaurants, our design could become a fairly simple

addition to the growing technical side of running a restaurant. The key distinction of

our system being the collection and dispersion of the given inputs from hosts and

waiters. The longer the system is in place the more accurate the system becomes, to

the point where no longer will the host need to be a job of finding the best location

for the guest. While our system runs the data on when and where the guest is likely

to be seated, the host is freed up to interact with guests. While many restaurants are

starting to implement a computerized system for the seating and ordering of guest,

most still do this manually. It’s interesting looking at this system, and knowing that

15

most of which is very simple, that this has yet to be put into action. While this

started off as our senior design project, and will end as our senior design project, we

have very little doubt that in the near future a similar program will be common in

restaurants.

16

Bibliography

Bertsekas, Dimitri P. "Traffic Behavior and Queuing in a QoS Environment." MIT.

Web. 12 Feb. 2015.

<http://web.mit.edu/dimitrib/www/OPNET_Full_Presentation.ppt>.

Kimes, Sheryl E., Ph.D., and Jochen Wirtz, Ph.D. "Customer Satisfaction with Seating

Policies in Casual-Dining Restaurants." Cornell Hospitality Report 7.16

(2007): n. pag. Cornell University School of Hotel Administration. Web. 1 Apr.

2015.

17

Appendix A: arrivalGenerator.m

clear
clc
stop = 0;
i = 1;
x=6.0;
arrivals = [];
while x < 9.0;
 if x<6.5;
 arrivals(i) = x+rand()/15;
 x=arrivals(i);
 end;
 if x>=6.5&&x<7.0;
 arrivals(i)=x+rand()/25;
 x=arrivals(i);
 end;
 if x>=7.0&&x<7.5;
 arrivals(i)=x+rand()/20;
 x=arrivals(i);
 end;
 if x>=7.5&&x<8.0;
 arrivals(i)=x+rand()/15;
 x=arrivals(i);
 end;
 if x>=8.0&&x<9.0;
 arrivals(i)=x+rand()/10;
 x=arrivals(i);
 end;
 stop=i;
 i=i+1;
end;
i=i1;
while i>0;
 if arrivals(1,i)<7.0;
 y = arrivals(1,i)6.0;
 arrivals(7,i)=y*.6+6.0;
 if arrivals(7,i)>=6.595
 arrivals(7,i)= 7.00;
 end;
 elseif arrivals(1,i)<8.0;
 y = arrivals(1,i)7.0;
 arrivals(7,i)=y*.6+7.0;
 if arrivals(7,i)>=7.595
 arrivals(7,i)= 8.00;
 end;
 else
 y = arrivals(1,i)8.0;
 arrivals(7,i)=y*.6+8.0;
 if arrivals(7,i)>=8.595
 arrivals(7,i)= 9.00;
 end;
 end;

18

 arrivals(7,i)= round(arrivals(7,i)*100)/100;
 i=i1;
end;

i=i+1;
while i<stop+1;
 order = rand();
 random = rand();
 oneThird = rand();
 dev = randn();
 if dev<0;
 dev=dev/2;
 end;
 x=.333;
 if random<.5;
 arrivals(2,i)=2;
 arrivals(5,i)=(x*15.*dev+20);
 elseif random<.75;
 arrivals(2,i)=round(rand()+3);
 arrivals(5,i)=(x*15.*dev+15);
 elseif random<.9;
 arrivals(2,i)=round(rand()+5);
 arrivals(5,i)=(x*15.*dev+25);
 elseif random<.95;
 if oneThird<.333;
 arrivals(2,i)= 7;
 elseif oneThird<.666;
 arrivals(2,i)=8;
 else
 arrivals(2,i)=9;
 end;
 arrivals(5,i)=(x*20.*dev+45);
 elseif random<.98;
 arrivals(2,i)=1;
 arrivals(5,i)=(x*15.*dev+20);
 else
 if oneThird<.333;
 arrivals(2,i)= 10;
 elseif oneThird<.666;
 arrivals(2,i)=11;
 else
 arrivals(2,i)=12;
 end;
 arrivals(5,i)=(x*20.*dev+50);
 end;
 if order<.35;
 arrivals(3,i)=1;%Deepdish Pizza
 arrivals(4,i)=(x*5.*dev+35);
 elseif order<.55;
 arrivals(3,i)=2;%Traditional Pizza
 arrivals(4,i)=(x*10.*dev+20);
 elseif order<.75;
 arrivals(3,i)=3;%Pasta
 arrivals(4,i)=(x*5.*dev+20);

19

 elseif order<.85;
 arrivals(3,i)=4;%Steak
 arrivals(4,i)=(x*5.*dev+15);
 elseif order<.95;
 arrivals(3,i)=5;%Chicken
 arrivals(4,i)=(x*5.*dev+15);
 else;
 arrivals(3,i)=6;%Salad
 arrivals(4,i)=(x*5.*dev+10);
 end
 arrivals(6,i)=round(arrivals(4,i)+arrivals(5,i));

 i=i+1;

end;
%Create simulation that takes away tables and counts time.
save('arrivals.mat', 'arrivals');

Appendix B: openTable.m

function [i,twotable,fourtable,sixtable,wait,queue,tables] =
opentable(i,twotable,fourtable,sixtable,wait,queue,tables)
load('arrivals.mat');
if arrivals(2,i)<=2;
 if twotable>0&&twotable<=12
 tables(1,1)=arrivals(6,i);
 twotable=twotable1;
 elseif fourtable>0&&twotable<=12;
 tables(2,1)=arrivals(6,i);
 fourtable=fourtable1;
 else
 wait(:,queue)=arrivals(:,i);
 queue=queue+1;
 end;
elseif arrivals(2,i)<=4;
 if f function [i,twotable,fourtable,sixtable,wait,queue,tables] =
opentable(i,twotable,fourtable,sixtable,wait,queue,tables)
load('arrivals.mat');
if arrivals(2,i)<=2;
 if twotable>0&&twotable<=12
 tables(1,1)=arrivals(6,i);
 twotable=twotable1;
 elseif fourtable>0&&twotable<=12;
 tables(2,1)=arrivals(6,i);
 fourtable=fourtable1;
 else
 wait(:,queue)=arrivals(:,i);
 queue=queue+1;
 end;
elseif arrivals(2,i)<=4;
 if fourtable>0 && fourtable<=12
 tables(2,1)=arrivals(6,i);
 fourtable=fourtable1;

20

 elseif twotable>4 && twotable<=12
 tables(1,1)=arrivals(6,i);
 tables(1,2)=arrivals(6,i);
 twotable=twotable2;
 else
 wait(:,queue)=arrivals(:,i);
 queue=queue+1;

 end;
elseif arrivals(2,i)<=6;
 if sixtable>0 && sixtable<=2
 tables(3,1)=arrivals(6,i);
 sixtable=sixtable1;
 elseif fourtable>5 && fourtable<=12;
 if twotable>5 && twotable<12;
 tables(2,1)=arrivals(6,i);
 tables(1,1)=arrivals(6,i);
 fourtable=fourtable1;
 twotable=twotable1;
 else
 tables(2,1)=arrivals(6,i);
 tables(2,2)=arrivals(6,i);
 fourtable=fourtable2;
 end;
 elseif twotable>5 && twotable<=12;
 tables(1,1)=arrivals(6,i);
 tables(1,2)=arrivals(6,i);
 tables(1,3)=arrivals(6,i);
 twotable=twotable3;
 else
 wait(:,queue)=arrivals(:,i);
 queue=queue+1;
 end;
elseif arrivals(2,i)<=8;
 if fourtable>=6 && fourtable<=12;
 tables(2,1)=arrivals(6,i);
 tables(2,2)=arrivals(6,i);
 fourtable=fourtable2;
 elseif sixtable>0 && sixtable<=2;
 if twotable>=5 && twotable<=12;
 tables(3,1)=arrivals(6,i);
 tables(1,1)=arrivals(6,i);
 twotable=twotable1;
 sixtable=sixtable1;
 elseif fourtable>=5 && fourtable<=12;
 tables(3,1)=arrivals(6,i);
 tables(2,1)=arrivals(6,i);
 fourtable=fourtable1;
 sixtable=sixtable1;
 else
 tables(3,1)=arrivals(6,i);
 tables(3,2)=arrivals(6,i);
 sixtable=sixtable2;
 end;

21

 elseif fourtable>=5 && fourtable<=12;
 if twotable>=5 && twotable<=12;
 tables(2,1)=arrivals(6,i);
 tables(1,1)=arrivals(6,i);
 fourtable=fourtable1;
 twotable=twotable1;
 end;
 else
 wait(:,queue)=arrivals(:,i);
 queue=queue+1;
 end;
elseif arrivals(2,i)<=10;
 if sixtable>0;
 if fourtable>4 && fourtable<=12;
 tables(3,1)=arrivals(6,i);
 tables(2,1)=arrivals(6,i);
 fourtable=fourtable1;
 sixtable=sixtable1;
 elseif twotable>5 && twotable<=12;
 tables(3,1)=arrivals(6,i);
 tables(1,1)=arrivals(6,i);
 tables(1,2)=arrivals(6,i);
 twotable=twotable2;
 sixtable=sixtable1;
 else
 tables(3,1)=arrivals(6,i);
 tables(3,2)=arrivals(6,i);
 sixtable=sixtable2;
 end;
 elseif fourtable>4 && fourtable<=12;
 if fourtable>5 && twotable>4 && fourtable<=12 && twotable<=12;
 tables(2,1)=arrivals(6,i);
 tables(2,2)=arrivals(6,i);
 tables(1,1)=arrivals(6,i);
 fourtable=fourtable2;
 twotable=twotable1;
 elseif twotable>6 && twotable<=12;
 tables(3,1)=arrivals(6,i);
 tables(1,1)=arrivals(6,i);
 tables(1,2)=arrivals(6,i);
 tables(1,3)=arrivals(6,i);
 twotable=twotable3;
 sixtable=sixtable1;
 end;
 else
 wait(:,queue)=arrivals(:,i);
 queue=queue+1;
 end;
elseif arrivals(2,i)<=12;
 if sixtable>0;
 if sixtable>1;
 tables(3,1)=arrivals(6,i);
 tables(3,2)=arrivals(6,i);
 sixtable=sixtable2;

22

 elseif fourtable>4 && fourtable<=12;
 if twotable>4 && twotable<=11;
 tables(3,1)=arrivals(6,i);
 tables(2,1)=arrivals(6,i);
 tables(1,1)=arrivals(6,i);
 twotable=twotable1;
 fourtable=fourtable1;
 sixtable=sixtable1;
 elseif fourtable>5 && fourtable<=12;
 tables(3,1)=arrivals(6,i);
 tables(2,1)=arrivals(6,i);
 tables(2,2)=arrivals(6,i);
 fourtable=fourtable2;
 sixtable=sixtable1;
 end
 elseif twotable>7 && twotable<=12;
 tables(3,1)=arrivals(6,i);
 tables(1,1)=arrivals(6,i);
 tables(1,2)=arrivals(6,i);
 tables(1,3)=arrivals(6,i);
 twotable=twotable3;
 sixtable=sixtable1;
 end;
 elseif fourtable>5 && fourtable<=12;
 if fourtable>6 && fourtable<=12;
 tables(2,1)=arrivals(6,i);
 tables(2,2)=arrivals(6,i);
 tables(2,3)=arrivals(6,i);
 fourtable=fourtable3;
 elseif twotable>5 && twotable<=12;
 tables(2,1)=arrivals(6,i);
 tables(2,2)=arrivals(6,i);
 tables(1,1)=arrivals(6,i);
 tables(1,2)=arrivals(6,i);
 fourtable=fourtable2;
 twotable=twotable2;
 end;
 else
 wait(:,queue)=arrivals(:,i);
 queue=queue+1;
 end;
end;

i=i+1;
count=1;
if i<=(length(arrivals));
 while count<=12
 if i<=(length(arrivals)); %This is always true per while loop
criteria.
 if i==(length(arrivals))
 time=0;
 else
 time = round((arrivals(1,i+1)arrivals(1,i))*60); %Change
to minutes before subtracting.

23

 end
 if tables(1,count)>0;
 tables(1,count)=tables(1,count)time;
 if tables(1,count)<=0;
 tables(1,count)=0;
 twotable=twotable+1;
 end;
 end;
 if tables(2,count)>0;
 tables(2,count)=tables(2,count)time;
 if tables(2,count)<=0;
 tables(2,count)=0;
 fourtable=fourtable+1;
 end;
 end;
 if tables(3,count)>0;
 tables(3,count)=tables(3,count)time;
 if tables(3,count)<=0;
 tables(3,count)=0;
 sixtable=sixtable+1;
 end;
 end;
 count = count+1;
 end;
 if(i==88 && count==12)
 print=5;
 end
 end
end;
ourtable>0 && fourtable<=12
 tables(2,1)=arrivals(6,i);
 fourtable=fourtable1;
 elseif twotable>4 && twotable<=12
 tables(1,1)=arrivals(6,i);
 tables(1,2)=arrivals(6,i);
 twotable=twotable2;
 else
 wait(:,queue)=arrivals(:,i);
 queue=queue+1;

 end;
elseif arrivals(2,i)<=6;
 if sixtable>0 && sixtable<=2
 tables(3,1)=arrivals(6,i);
 sixtable=sixtable1;
 elseif fourtable>5 && fourtable<=12;
 if twotable>5 && twotable<12;
 tables(2,1)=arrivals(6,i);
 tables(1,1)=arrivals(6,i);
 fourtable=fourtable1;
 twotable=twotable1;
 else
 tables(2,1)=arrivals(6,i);
 tables(2,2)=arrivals(6,i);

24

 fourtable=fourtable2;
 end;
 elseif twotable>5 && twotable<=12;
 tables(1,1)=arrivals(6,i);
 tables(1,2)=arrivals(6,i);
 tables(1,3)=arrivals(6,i);
 twotable=twotable3;
 else
 wait(:,queue)=arrivals(:,i);
 queue=queue+1;
 end;
elseif arrivals(2,i)<=8;
 if fourtable>=6 && fourtable<=12;
 tables(2,1)=arrivals(6,i);
 tables(2,2)=arrivals(6,i);
 fourtable=fourtable2;
 elseif sixtable>0 && sixtable<=2;
 if twotable>=5 && twotable<=12;
 tables(3,1)=arrivals(6,i);
 tables(1,1)=arrivals(6,i);
 twotable=twotable1;
 sixtable=sixtable1;
 elseif fourtable>=5 && fourtable<=12;
 tables(3,1)=arrivals(6,i);
 tables(2,1)=arrivals(6,i);
 fourtable=fourtable1;
 sixtable=sixtable1;
 else
 tables(3,1)=arrivals(6,i);
 tables(3,2)=arrivals(6,i);
 sixtable=sixtable2;
 end;
 elseif fourtable>=5 && fourtable<=12;
 if twotable>=5 && twotable<=12;
 tables(2,1)=arrivals(6,i);
 tables(1,1)=arrivals(6,i);
 fourtable=fourtable1;
 twotable=twotable1;
 end;
 else
 wait(:,queue)=arrivals(:,i);
 queue=queue+1;
 end;
elseif arrivals(2,i)<=10;
 if sixtable>0;
 if fourtable>4 && fourtable<=12;
 tables(3,1)=arrivals(6,i);
 tables(2,1)=arrivals(6,i);
 fourtable=fourtable1;
 sixtable=sixtable1;
 elseif twotable>5 && twotable<=12;
 tables(3,1)=arrivals(6,i);
 tables(1,1)=arrivals(6,i);
 tables(1,2)=arrivals(6,i);

25

 twotable=twotable2;
 sixtable=sixtable1;
 else
 tables(3,1)=arrivals(6,i);
 tables(3,2)=arrivals(6,i);
 sixtable=sixtable2;
 end;
 elseif fourtable>4 && fourtable<=12;
 if fourtable>5 && twotable>4 && fourtable<=12 && twotable<=12;
 tables(2,1)=arrivals(6,i);
 tables(2,2)=arrivals(6,i);
 tables(1,1)=arrivals(6,i);
 fourtable=fourtable2;
 twotable=twotable1;
 elseif twotable>6 && twotable<=12;
 tables(3,1)=arrivals(6,i);
 tables(1,1)=arrivals(6,i);
 tables(1,2)=arrivals(6,i);
 tables(1,3)=arrivals(6,i);
 twotable=twotable3;
 sixtable=sixtable1;
 end;
 else
 wait(:,queue)=arrivals(:,i);
 queue=queue+1;
 end;
elseif arrivals(2,i)<=12;
 if sixtable>0;
 if sixtable>1;
 tables(3,1)=arrivals(6,i);
 tables(3,2)=arrivals(6,i);
 sixtable=sixtable2;
 elseif fourtable>4 && fourtable<=12;
 if twotable>4 && twotable<=11;
 tables(3,1)=arrivals(6,i);
 tables(2,1)=arrivals(6,i);
 tables(1,1)=arrivals(6,i);
 twotable=twotable1;
 fourtable=fourtable1;
 sixtable=sixtable1;
 elseif fourtable>5 && fourtable<=12;
 tables(3,1)=arrivals(6,i);
 tables(2,1)=arrivals(6,i);
 tables(2,2)=arrivals(6,i);
 fourtable=fourtable2;
 sixtable=sixtable1;
 end
 elseif twotable>7 && twotable<=12;
 tables(3,1)=arrivals(6,i);
 tables(1,1)=arrivals(6,i);
 tables(1,2)=arrivals(6,i);
 tables(1,3)=arrivals(6,i);
 twotable=twotable3;
 sixtable=sixtable1;

26

 end;
 elseif fourtable>5 && fourtable<=12;
 if fourtable>6 && fourtable<=12;
 tables(2,1)=arrivals(6,i);
 tables(2,2)=arrivals(6,i);
 tables(2,3)=arrivals(6,i);
 fourtable=fourtable3;
 elseif twotable>5 && twotable<=12;
 tables(2,1)=arrivals(6,i);
 tables(2,2)=arrivals(6,i);
 tables(1,1)=arrivals(6,i);
 tables(1,2)=arrivals(6,i);
 fourtable=fourtable2;
 twotable=twotable2;
 end;
 else
 wait(:,queue)=arrivals(:,i);
 queue=queue+1;
 end;
end;

i=i+1;
count=1;
if i<=(length(arrivals));
 while count<=12
 if i<=(length(arrivals)); %This is always true per while loop
criteria.
 if i==(length(arrivals))
 time=0;
 else
 time = round((arrivals(1,i+1)arrivals(1,i))*60); %Change
to minutes before subtracting.
 end
 if tables(1,count)>0;
 tables(1,count)=tables(1,count)time;
 if tables(1,count)<=0;
 tables(1,count)=0;
 twotable=twotable+1;
 end;
 end;
 if tables(2,count)>0;
 tables(2,count)=tables(2,count)time;
 if tables(2,count)<=0;
 tables(2,count)=0;
 fourtable=fourtable+1;
 end;
 end;
 if tables(3,count)>0;
 tables(3,count)=tables(3,count)time;
 if tables(3,count)<=0;
 tables(3,count)=0;
 sixtable=sixtable+1;
 end;
 end;

27

 count = count+1;
 end;
 if(i==88 && count==12)
 print=5;
 end
 end
end;

Appendix C: tableCounter.m

clear
clc
load('arrivals.mat');
tables=zeros(3,12);
twotable=12;
fourtable=12;
sixtable=2;
wait=[];
queue=1;
call=1;
i=1;
while i<((length(arrivals)+1)) || isempty(wait)==0;
 if isempty(wait)==0;
 if wait(2,1)==0;
 wait(:,1)=[];
 circshift(wait, [0,1])
 continue
 end;
 print = wait(2,1)
 if 0<wait(2,1)&& wait(2,1)<=2;
 if twotable>0&&twotable<=12
 tables(1,1)=wait(6,1);
 twotable=twotable1;
 wait(:,1)=[];
 circshift(wait, [0,1])
 elseif fourtable>0&&twotable<=12;
 tables(2,1)=wait(6,1);
 fourtable=fourtable1;
 wait(:,1)=[];
 circshift(wait, [0,1])
 end;
 elseif 2<wait(2,1)&& wait(2,1)<=4;
 if fourtable>0 && fourtable<=12
 tables(2,1)=wait(6,1);
 fourtable=fourtable1;
 wait(:,1)=[];
 circshift(wait, [0,1])
 elseif twotable>4 && twotable<=12
 tables(1,1)=wait(6,1);
 tables(1,2)=wait(6,1);
 twotable=twotable2;
 wait(:,1)=[];
 circshift(wait, [0,1])

28

 end;
 elseif 4<wait(2,1)&& wait(2,1)<=6;
 if sixtable>0 && sixtable<=2
 tables(3,1)=wait(6,1);
 sixtable=sixtable1;
 wait(:,1)=[];
 circshift(wait, [0,1])
 elseif fourtable>5 && fourtable<=12;
 if twotable>5 && twotable<12;
 tables(2,1)=wait(6,1);
 tables(1,1)=wait(6,1);
 fourtable=fourtable1;
 twotable=twotable1;
 wait(:,1)=[];
 circshift(wait, [0,1])
 else
 tables(2,1)=wait(6,1);
 tables(2,2)=wait(6,1);
 fourtable=fourtable2;
 wait(:,1)=[];
 circshift(wait, [0,1])
 end;
 elseif twotable>5 && twotable<=12;
 tables(1,1)=wait(6,1);
 tables(1,2)=wait(6,1);
 tables(1,3)=wait(6,1);
 twotable=twotable3;
 wait(:,1)=[];
 circshift(wait, [0,1])
 end;
 elseif 6<wait(2,1)&& wait(2,1)<=8;
 if fourtable>=6 && fourtable<=12;
 tables(2,1)=wait(6,1);
 tables(2,2)=wait(6,1);
 fourtable=fourtable2;
 wait(:,1)=[];
 circshift(wait, [0,1])
 elseif sixtable>0 && sixtable<=2;
 if twotable>=5 && twotable<=12;
 tables(3,1)=wait(6,1);
 tables(1,1)=wait(6,1);
 twotable=twotable1;
 sixtable=sixtable1;
 wait(:,1)=[];
 circshift(wait, [0,1])
 elseif fourtable>=5 && fourtable<=12;
 tables(3,1)=wait(6,1);
 tables(2,1)=wait(6,1);
 fourtable=fourtable1;
 sixtable=sixtable1;
 wait(:,1)=[];
 circshift(wait, [0,1])
 else
 tables(3,1)=wait(6,1);

29

 tables(3,2)=wait(6,1);
 sixtable=sixtable2;
 wait(:,1)=[];
 circshift(wait, [0,1])
 end;
 elseif fourtable>=5 && fourtable<=12;
 if twotable>=5 && twotable<=12;
 tables(2,1)=wait(6,1);
 tables(1,1)=wait(6,1);
 fourtable=fourtable1;
 twotable=twotable1;
 wait(:,1)=[];
 circshift(wait, [0,1])
 end;
 end;
 elseif 8<wait(2,1)&& wait(2,1)<=10;
 if sixtable>0;
 if fourtable>4 && fourtable<=12;
 tables(3,1)=wait(6,1);
 tables(2,1)=wait(6,1);
 fourtable=fourtable1;
 sixtable=sixtable1;
 wait(:,1)=[];
 circshift(wait, [0,1])
 elseif twotable>5 && twotable<=12;
 tables(3,1)=wait(6,1);
 tables(1,1)=wait(6,1);
 tables(1,2)=wait(6,1);
 twotable=twotable2;
 sixtable=sixtable1;
 wait(:,1)=[];
 circshift(wait, [0,1])
 else
 tables(3,1)=wait(6,1);
 tables(3,2)=wait(6,1);
 sixtable=sixtable2;
 wait(:,1)=[];
 circshift(wait, [0,1])
 end;
 elseif fourtable>4 && fourtable<=12;
 if fourtable>5 && twotable>4 && fourtable<=12 &&
twotable<=12;
 tables(2,1)=wait(6,1);
 tables(2,2)=wait(6,1);
 tables(1,1)=wait(6,1);
 fourtable=fourtable2;
 twotable=twotable1;
 wait(:,1)=[];
 circshift(wait, [0,1])
 elseif twotable>6 && twotable<=12;
 tables(3,1)=wait(6,1);
 tables(1,1)=wait(6,1);
 tables(1,2)=wait(6,1);
 tables(1,3)=wait(6,1);

30

 twotable=twotable3;
 sixtable=sixtable1;
 wait(:,1)=[];
 circshift(wait, [0,1])
 end;
 end;
 elseif 10<wait(2,1)&& wait(2,1)<=12;
 if sixtable>0;
 if sixtable>1;
 tables(3,1)=wait(6,1);
 tables(3,2)=wait(6,1);
 sixtable=sixtable2;
 wait(:,1)=[];
 circshift(wait, [0,1])
 elseif fourtable>4 && fourtable<=12;
 if twotable>4 && twotable<=11;
 tables(3,1)=wait(6,1);
 tables(2,1)=wait(6,1);
 tables(1,1)=wait(6,1);
 twotable=twotable1;
 fourtable=fourtable1;
 sixtable=sixtable1;
 wait(:,1)=[];
 circshift(wait, [0,1])
 elseif fourtable>5 && fourtable<=12;
 tables(3,1)=wait(6,1);
 tables(2,1)=wait(6,1);
 tables(2,2)=wait(6,1);
 fourtable=fourtable2;
 sixtable=sixtable1;
 wait(:,1)=[];
 circshift(wait, [0,1])
 end
 elseif twotable>7 && twotable<=12;
 tables(3,1)=wait(6,1);
 tables(1,1)=wait(6,1);
 tables(1,2)=wait(6,1);
 tables(1,3)=wait(6,1);
 twotable=twotable3;
 sixtable=sixtable1;
 wait(:,1)=[];
 circshift(wait, [0,1])
 end;
 elseif fourtable>5 && fourtable<=12;
 if fourtable>6 && fourtable<=12;
 tables(2,1)=wait(6,1);
 tables(2,2)=wait(6,1);
 tables(2,3)=wait(6,1);
 fourtable=fourtable3;
 wait(:,1)=[];
 circshift(wait, [0,1])
 elseif twotable>5 && twotable<=12;
 tables(2,1)=wait(6,1);
 tables(2,2)=wait(6,1);

31

 tables(1,1)=wait(6,1);
 tables(1,2)=wait(6,1);
 fourtable=fourtable2;
 twotable=twotable2;
 wait(:,1)=[];
 circshift(wait, [0,1])
 end;
 end;
 end;
 count = 1;
 while count<=12
 if tables(1,count)>0;
 tables(1,count)=tables(1,count)1;
 if tables(1,count)<=0;
 tables(1,count)=0;
 twotable=twotable+1;
 end;
 end;
 if tables(2,count)>0;
 tables(2,count)=tables(2,count)1;
 if tables(2,count)<=0;
 tables(2,count)=0;
 fourtable=fourtable+1;
 end;
 end;
 if tables(3,count)>0;
 tables(3,count)=tables(3,count)1;
 if tables(3,count)<=0;
 tables(3,count)=0;
 sixtable=sixtable+1;
 end;
 end;
 count = count+1;
 end;
 else
 [i, twotable, fourtable, sixtable, wait, queue,
tables]=opentable(i, twotable, fourtable, sixtable, wait, queue, tables);
 end;
 a = sort(tables(1,:));
 b = sort(tables(2,:));
 c = sort(tables(3,:));
 tables = [a;b;c]
end;

Appendix D: statisticalData.m

%Normal Distribution Plot,
k = length(arrivals(7,:));
hours = (arrivals(7,89)arrivals(7,1));
lambda = (k/hours); % Average arrival rate (customers/hour)
x = [arrivals(7,89):1:arrivals(7,89)];
norm = normpdf(x,0,1);
figure;

32

plot(x,norm);

%Mean and standard deviation for eating times
eatingTimes = arrivals(5,:);
meanEating = mean(arrivals(5,:));
stDevEating = std(arrivals(5,:));

Appendix E: Simulation Model Flowchart

This flowchart depicts the simulation model used to evaluate the accuracy of our
wait time estimation method. This model takes randomly generated restaurant
events as inputs.

Appendix F: Real Minus Estimated Wait Times Plot

This plot depicts the results of one simulation. The y-axis depicts the difference
between a party’s experienced wait time and their estimated wait time. The x-axis
depicts each individual party that was in the waitlist at some point during the
simulation.

